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ABSTRACT

Embodied conversational agents are required to be able to
express themselves convincingly and autonomously. Based
on an empirial study on spatial descriptions of landmarks
in direction-giving, we present a model that allows virtual
agents to automatically generate, i.e., select the content and
derive the form of coordinated language and iconic gestures.
Our model simulates the interplay between these two modes
of expressiveness on two levels. First, two kinds of knowledge
representation (propositional and imagistic) are utilized to
capture the modality-specific contents and processes of con-
tent planning. Second, specific planners are integrated to
carry out the formulation of concrete verbal and gestural
behavior. A probabilistic approach to gesture formulation
is presented that incorporates multiple contextual factors as
well as idiosyncratic patterns in the mapping of visuo-spatial
referent properties onto gesture morphology. Results from a
prototype implementation are described.
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1. INTRODUCTION

One key issue in the endowment of virtual agents with
human-like expressiveness, i.e., richness and versatility, is
the autonomous generation of language and accompanying
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gestures. Current literature on gesture research states that
the question “why different gestures take the particular phys-
ical form they do is one of the most important yet largely
unaddressed questions in gesture research” [1, p. 499]. This
holds especially for iconic gestures, for which information
has to be mapped from some mental image into (at least
partly) resembling gestural form. This transformation is
neither direct nor straightforward but involves a number of
issues like the composability of a suitable linguistic context,
the choice of gestural representation technique (e.g., plac-
ing, drawing etc.), or the low-level choices of morphological
features such as handshape or movement trajectory.

In this paper, we present a novel approach to generat-
ing coordinated speech and iconic gestures in virtual agents.
It comprises an architecture that simulates the interplay
between these two modes of expressiveness on two levels.
First, two kinds of knowledge representation—propositional
and imagistic—are utilized to capture the modality-specific
contents and processes of content planning (i.e., what to
convey). Second, specific planners are integrated to carry
out the formulation of concrete verbal and gestural behavior
(i.e., how to convey it best). The overall interplay of these
modules is modeled as a multi-agent cooperation process in
order to meet the low latency and realtime requirements
that hold for behavior generation in interactive agents.

In the following, we will put special focus on the above-
described puzzle of gesture formulation. After discussing
related work in the following section, we report in Section
3 on an empirical study on spontaneous speech and gesture
use in VR direction-giving. Its results indicate that a model
for autonomous generation of expressive gestures must take
into account both, inter-personal commonalities in terms of
contextual factors constraining the involved decisions [11],
and intra-personal systematics as apparent in idiosyncratic
gesture patterns. We thus present in Section 4, after intro-
ducing the overall architecture of our framework, a simu-
lation account going beyond recent systems that either de-
rive iconic gestures from systematic meaning-form mappings
(e.g. [12]), or model the individual gesturing patterns of spe-
cific speakers (e.g., [16]). Based on data from our annotated
corpus, we employ machine learning and adaptation algo-
rithms to build Bayesian networks that allow to model both
kinds of constraining factors. Finally, Section 5 presents re-
sults from an application of an implementation of our model
in a spatial-description task domain.
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2. RELATED WORK

The computational modeling of multimodal communica-
tive behavior and its simulations with embodied (virtual or
robotic) agents is still a relatively unexplored field. The Be-
havior Expression Animation Toolkit BEAT [3] employed a
set of behavior generators to select and schedule conversa-
tional behaviors like hand gesture, head nod, or pitch ac-
cents for a given text. Relying on empirical results, spe-
cialized generators supplemented the verbal description of
actions as well as of rhematic object features with gestures
drawn from a lexicon. REA [2] extended this to generation
of context-appropriate natural language and gesture by em-
ploying a natural language generator (SPUD [21]). Specific
constituents were needed to coordinate linguistic expressions
and iconic gestures with each other in meaning, and with the
discourse context within which they occur. Gestures were
hence lexicalized like words, selected using a lexical choice
algorithm and incorporated directly into sentence planning.

Huenerfauth [8] proposed an approach to translate English
texts from a spatial domain into American Sign Language
(ASL). The system turns the text into a 3D model of how
the described objects are arranged and move. This model
is “overlaid” onto the space in front of the ASL signer. A
planning-based NLG approach selects sign templates from
a library, fills in missing parameters, and builds animation
events to produce them.

The NUMACK system [12] has tried to overcome the
limitations of lexicon-based gesture generation by formulat-
ing the meaning-form mapping on a level of single gesture
features. A gesture planner (GP) composed morphologi-
cal features (hand shape or movement trajectory) according
to how they would depict features of visuo-spatial mean-
ing (so-called IDF's; shapes, extent, relative locations, etc.),
considered part of the current communicative intention. By
exploring all possible combinations, the GP produces a set
of possible gestures, each of which annotated with the IDFs
it encodes. A sentence planner selects and combines them
with words in order to derive multimodal utterances. NU-
MACK proved that gestures can be automatically assembled
based on an representation of visuo-spatial meaning. How-
ever, an empirical study revealed that similarity with the
referent cannot account for all occurrences of iconic gesture
[12].

Another line of research adopts a stronger data-driven ap-
proach. Stone et al. [20] pick units of communicative per-
formance from a database, while retaining the synchrony
and communicative coordination that characterizes peoples’
spontaneous expressiveness. Motion samples are recombined
with new speech samples and blended in order to re-create
coherent multimodal phrases. The range of possible utter-
ances is naturally limited to what can be assembled out of
the pre-recorded behavior. Further, combinatorical search
approaches suffer from high computational costs.

Hartmann et al. [6] enabled the virtual agent Greta to
process an utterance marked up with communicative func-
tions, and to match these functions to a library of prototype
gestures. Greta’s gesture planner is unique in that it allows
for parametric control of six dimensions of expressivity of
a gesture, such as spatial extent or the amount of energy.
This approach is limited to the set of prototype gestures,
although it can create a range of variants on them.

Neff et al. [16] recently focused on data-driven simula-
tion of small discourse gestures, conduit gestures and beats.
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Based on probabilistically modeled gesture profiles, the sys-
tem takes arbitrary texts as input and produces synchro-
nized conversational gestures in the style of a particular
speaker. This approach succeeds in making a virtual char-
acter look more lively and natural. Yet, it does not account
for the meaning-carrying functions of gestures.

In summary, automatizing the generation of multimodal
behavior is a daunting task. Numerous systems were built
and they have focused either on more or less stipulated reg-
ularities in multimodal utterances to come up with gener-
alized production models, or on data-driven modeling and
editing of a limited number of gesture patterns.

3. EMPIRICAL BASIS

There is only few empirical work that has tried to analyze
the meaning-form mapping in expressive gesture. Kopp et
al. [12] describe a gesture study indicating that people tend
to employ their hands in particular ways (e.g., flat hand-
shape, vertically oriented palm) in order to create gestural
images of objects with particular shape properties (e.g., flat
upright walls). However, the shape properties in this analy-
sis were idealized and failed to fully account for many of the
movement forms seen. A more general conclusion, though,
which concurs with gesture literature, is that iconicity with
particular spatial features may not be the sole driving force
behind an iconic gesture.

Figure 1: Experiment setting: Stimulus presenta-
tion (left) and dialog phase with the speaker utter-
ing “the left church has two towers” (right).

In order to investigate this question we have started a
study on spatial communication dyads involving direction-
giving and sight description. In this study, we employed
Virtual Reality technology to exactly control the stimuli that
the subjects perceive prior to their descriptions (see Fig. 1).

The goal of our study is to find out which contextual fac-
tors govern to which extent the use of words and gestures
for objects descriptions. One aspect we focused on here for
the first time as a candidate for inter-speaker systematics is
the use of representation techniques [9] for transforming per-
ceived object information into a gesture. By and large, they
can be distinguished according to the following categories:
(1) indexing: pointing to a position within the gesture space;
(2) placing: an object is placed or set down within ges-
ture space; (3) shaping: an object’s shape is contoured or
sculpted in the air; (4) drawing: the hands trace the out-
line of an object’s shape; (5) posturing: the hands form a
static configuration to stand as a model for the object itself.
We suspected that this differentiation may be an important
step in the formation of a gesture beyond merely establishing
iconicity. Note that several representation techniques may
be found in one gesture. Our empirical analyses thus aimed
to test whether any factors correlate with the choice of tech-
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nique. We investigated if different speakers gesture similarly
depending on the dialog context as well as the visuo-spatial
properties of possibly different objects. Further, we wanted
to find out the individual differences between speakers who
gesture about the same object.

3.1 Method

We collected a dialog corpus of 25 dyads with one partici-
pant giving directions to another participant. The direction
giver had a virtual ride through a VR town out of simplified
3D objects (see Fig. 1). After finishing the ride, the direction
giver had to explain the route to the follower (Fig. 1), who
was to be enabled to find the same way through the virtual
town and identify five important landmarks afterwards.

Audio- and videotapes were taken of each dialog. For the
videotape, three synchronized camera views were recorded.
All coverbal gestures have been coded according to five cat-
egories of representation technique. From the transcripts,
we further coded for the task-related communicative inten-
tion of the speaker. Denis [5] developed several categories
of communicative goals that can be distinguished in route
directions. As we were mainly interested in object descrip-
tions, we revised and refined it for this case into three cat-
egories: introducing an object without further description,
describing an introduced object, and positioning an object
without providing further description of it.

3.2 Results

3.2.1 Inter-subjective correlations

In our analysis we concentrated on the descriptions of the
most significant part of the route, the church square (see Fig.
5), from 10 dyads with 174 speech-accompanying gestures in
total. Our first analysis aimed to correlate the use of repre-
sentation techniques with the spatio-geometrical properties
of the objects described. It turned out that there is a signif-
icant difference between object shapes which can be decom-
posed into detailed subparts (whole-part relations) and ob-
jects without any subparts (x? = 61.776,df = 4,p < 0.001).
For objects without subparts, the number of shaping and
drawing gestures is increased, whereas the rate of indexing
and placing gestures is decreased. For for objects which
have at least one subpart, indexing and placing gestures oc-
cur more often than expected, while shaping and drawing
gestures occur less often (Tab. 1). Thus, if an object is min-
imally complex in the sense that it has no subparts, and
therefore seems more amenable to gestural reconstruction,
depicting gestures are preferred. For more complex objects,
with at least one sub-part, people prefer positioning ges-
tures.

Another way to assess shape complexity of an object is in
terms of its inherent symmetry: The more symmetric axes
an object has, the less complex it is perceived. We analyzed
the correlation between representation technique and exis-
tence of symmetry in the reference object. Again, we found
a significant relationship (x? = 79.028,df = 4, p < 0.001): If
an object has no symmetrical axis, i.e., is more complex, in-
dexing and placing gestures are used relatively often, while
drawing, shaping and modeling gestures are used less often
than expected (see Tab. 1). In contrast, if an object has at
least one symmetrical axis, the number of drawing, shaping
and modeling gestures is increased, whereas the number of
indexing and placing gestures is decreased. This is in line
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with the above finding, that complex objects are likely to be
positioned gesturally, while less complex objects are more
likely to be depicted by gesture.

A further analysis investigated the correlation of repre-
sentation technique and dialog context, in particular the
communicative goal. We found a significant relationship be-
tween the two variables (x* = 81.206,df = 8,p < 0.001).
Descriptions come along with significantly more depicting
gestures (shaping, drawing, posturing), while the spatial ar-
rangement of entities is accompanied by indexing and plac-
ing gestures in the majority of cases (see Tab. 1).

3.2.2 Individual differences

Analyzing the individual differences in the use of repre-
sentation techniques revealed that individuals differ signif-
icantly in the way they gesture about the same thing, and
these differences concern multiple decision levels involved in
the process of gesture formation. To illustrate this, we will
compare the gesturing behavior of two particular individ-
uals, speakers P5 and P16. First of all, the two individu-
als differ in their gesture rate: While speaker P5 performs
on average 23.8 gestures per minute, speaker P16 performs
29.5 gestures per minute. In the whole corpus (N=25),
gestures rates differ from a minimum of 2.34 to a maxi-
mum 32.83 gestures per minute. Second, the two speak-
ers differ significantly in their use of representation tech-
niques (see Tab. 2): Speaker P5 uses much more shap-
ing and posturing gestures than P16, whereas speaker P16
uses much more placing gestures than P5. So, speaker P5
seems to use gesture to depict the entities she is talking
about, while speaker P16 uses her hands rather to posi-
tion entities in space. This difference is highly significant
(x* = 398.565, df = 50, N = 1919, p < 0.001).

Table 2: Distribution of representation technique for
two speakers P5 and P16.

Speaker P5 Speaker P16

Repr. Techn. # % A% # % A%
Indexing 52 109 -8,8 25 141 5.6
Placing 50 10.5 2.2 57 322 4195
Shaping 172 36.1 +54 49 277 -3.0
Drawing 11 2.3 457 12 6.8 1.2
Posturing 53 11.1 456 2 1.1 44
Other 138 290 456 32 181 5.3
Handshape

ASL-B 97 204 -239 119 67.2 4229
ASL-C 122 256 4107 12 6.8 8.1
ASL-G 91 19.1 +1.8 14 7.9 -9.4
ASL-O 11 2.3 +0.2 0 0.0 2.1
ASL-5 57 12.0 +6.0 12 6.8 +0.8
Other 98 206 +52 20 113 4.1

Finally, individual differences of the speakers become ap-
parent in the morphological features of their gestures, such
as the handshapes chosen (Tab. 2): Speaker P16 uses the
handshape ASL-B in the majority of her gestures (67.2 %)
while other handshapes are chosen in relatively equal mi-
nor parts. In contrast, speaker P5 diversifies her hand-
shapes: ASL-B, ASL-C, and ASL-G are used more or less
equally often. Again, this difference is highly significant
(x? = 614.779,df = 50, N = 1919, p < 0.001).
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Table 1:

Interrelation of representation technique and visuo-spatial features of the referent (number of

subparts and number of symmetrical axes). Parenthetical values are expected occurrences.

Representation Number of subparts Number of symmetrical axes Communicative goal
Technique 0 1 or more 0 1-3 Intro. Descr. Pos.
Indexing 6 (13.4) * 18 (10.6) * 18 (7.7) *** 6 (16.3) * 0 (2.5) 6 (14.8) * 18 (6.8) ***
Placing 4 (20.1) *** 32 (15.9) *** 27 (11.6) *** 9 (24.4) ** 6 (3.7) 7 (22.1) ¥ 23 (10.1%%F)
Shaping 45 (32.3) * 13 (25.7) * 9 (18.7) * 49 (39.3) 31 (33.0) 6 (6.0) * 3 (16.3) ***
Drawing 21 (13.4) * 3 (10.6) * 0 (7.7) ** 24 (16.3) * 15 (13.7) 2 (2.5) 2 (6.8) *
Posturing 21 (17.8) 11 (14.2) 2 (10.3) ** 30 (21.7) 4(3.3) 25(19.7) 3 (9.0) *

In conclusion we see systematic factors having an impact
on which representation technique is chosen across speakers.
This inter-personal systematics concerns not only the corre-
lation between a gesture and its referent, but also the com-
municative intention underlying an utterance. At the same
time, there is a form of intra-personal systematics, both of
which must be taken into consideration by an account of
why people gesture the way they actually do.

4. COMPUTATIONAL MODELING

Our goal is a model that, given a particular discourse
context and a given communicative intention such as, in
lay terms, “describe how object X looks like”, allows virtual
agents to automatically select the content and derive the
form of coordinated language and iconic gestures. Look-
ing at current psycholinguistic production models, Kita &
Ozyiirek’s [10] Interface Hypothesis Model (IH model, hence-
forth) provides inspiration in several ways. First, informa-
tion packaging for iconic gestures parallels linguistic packag-
ing [10]. A computational model, therefore, has to consider
in particular the ways in which the syntactical and grammat-
ical structures of a language are reflected in its conceptual
structure, and the influence of this structure on the content
of coverbal iconic gestures. Second, performing represen-
tational gestures impacts content planning and conceptu-
alization [7] as well as the lexical choices [15] in speech. A
computational model thus needs to account for how “gesture
thinking” interacts with the propositional thinking that un-
derlies speech. None of the existing systems (see Sect. 2)
complies with this insight.

Our architecture (shown in Fig. 2) is inspired by, but
extends and substantiates Kita & Ozyiirek’s IH model in
several ways. We distinguish four processing modules to be
involved in content planning and micro-planning of speech
and gesture: Image Generator, Preverbal Message Genera-
tor, Speech Formulator, and Gesture Formulator. That is,
in contrast to the IH model, we adopt the idea advocated
in other production models [4, 12] of two functionally sepa-
rable modules, one for activating and selecting features of
visuo-spatial imagery (the Image Generator) and one for
turning these features into gestural form (Gesture Formu-
lator). In addition, two dedicated modules (Motor Control
and Phonation) are concerned with the realization of syn-
chronized speech and gesture movements with the virtual
human Max [13]. Further components are a discourse model
and distinct long-term memories for imagery and proposi-
tional knowledge.

The overall production process is treated as a multi-agent
problem solving task. All modules are modeled as soft-
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ware agents that operate concurrently and proactively on
a central working memory, realized as a globally accessible,
structured blackboard. As opposed to message-passing ar-
chitectures the overall production process thus evolves by
each module observing entries in the working memory, tak-
ing local action if possible, and modifying or posting entries
in result. The production process is finished when all en-
tries associated with a multimodal communicative delivery
stabilize and specifications of verbal and gestural acts have
been formed in working memory. In this way, interaction
among the modules realizes content planning and micro-
planning in an interleaved and interactive manner, and it
enables bottom-up processes in both modalities.

4.1 Representation of content

Humans adopt different perspectives towards a spatial
scene, describe objects at different levels of detail, and at
different scales. In doing so, speakers transform, scale, or
arrange their mental visuo-spatial representation with great
flexibility and adaptivity, and a propositional formalism can
only hardly, if at all, account for this. We thus face the
necessity to account for the dichotomic nature of multi-
modal expressivity already at the level of mental represen-
tations. Thus, going beyond previous approaches that were
based on one common propositional representation [12], we
adopt a dual coding perspective for our content representa-
tion. In his dual coding theory, Paivio [17] distinguishes two
functionally independent systems, verbal memory and image
memory, with associative links within each memory and pos-
sible referential links across the two systems. Likewise, we
propose a representational layer underlying the production
of multimodal behavior that consists of three parts, (1) an
imagistic description, (2) propositional knowledge, and (3)
an interface in the form multimodal concepts that associate
imagistic and propositional knowledge.

4.1.1 Imagistic Descriptions

To realize computational imagery for the agent, we employ
an hierarchical model called Imagistic Description Trees (IDT)
[18]. IDT has been developed based on an empirical study
in order to capture the imagistic content of shape-related
gestures in a gesture interpretation system. Thus it is de-
signed to cover all decisive visuo-spatial features one finds
in iconic gesture.

Each node in an IDT contains an Imagistic Description
(IMD) which holds an schema representing the shape of an
object or object part. Object schemas contain up to three
axes representing spatial extents in terms of a numerical
measure and an assignment value like “max” or “sub”, clas-
sifying this axis’ extent relative to the other axes. Each axis
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Figure 2: Overview of the architecture of the speech and gesture production model.

can cover up to three dimensions to account for rotation
symmetries (becoming a so-called “integrated axis”). The
boundary of an object can be defined by a profile vector that
states symmetry, size, and edge properties for each object
axis or pair of axes. The links in the tree structure represent
spatial relations between parts and wholes, and are defined
by transformation matrices. Note that the IDT model ex-
plicates those spatial features of complexity of object shape
that we have found to significantly influence the choice of
the gesture representation technique. Fig. 3 illustrates how
imagery can be operationalized with the IDT model. We
have modeled extensive parts of the virtual world from our
study analogously.

4= {grh OSg, ves, Mg)
Iie = ({Ig, I OSyg, N0, Myg) 0S4 = ((2@}.8),(142}4)}, ..

0S8y, = ({(2{sub).8).(1.{max}15)}, ...)

It= Kt w2, lwah OSyp ves, My
08 = ({(2{sub).8),(14max}, 10)}, ...
My=[.]

Figure 3: IDT representation of a church tower.

4.1.2  Propositional representation

Speech formulation needs to draw upon a proper repre-
sentation of spatial knowledge, as well as conceptual back-
ground knowledge, about the considered entities. As com-
mon in computational approaches to language semantics, we
employ a propositional format for this, i.e., logical formulae

365

that state propositions over symbols that represent objects
and relations according to a given ontology. Since we focus
on object descriptions, the spatial knowledge pertains to ob-
jects (houses, streets, etc.), their properties (proper name,
color, quality, size, shape etc.), and the taxonomic (is-a),
partonomic (part-of) or spatial relations (on-top-of, left-of)
between them. An according knowledge base has been de-
fined for parts of the virtual world.

4.1.3 Multimodal concepts

The third part of the long-term memory are a number of
abstract multimodal concepts, which are bindings of IDTs
with corresponding propositional formulations. The imag-
istic part of multimodal concept is characterized by under-
specification, i.e., it allows more than one interpretation.
This underspecification draws the distinction between the
imagistic part of a multimodal concept and the imagistic
description of a concrete spatial object. For example, the
property of being “longish” is represented as an underspeci-
fied IDT in which one axis dominates the other axes, as well
as in terms of a logical formula“longish(?X)”. As such an un-
derspecified IDT can be matched by means of formal graph
unification [18] with any other IDT, e.g. of a specific tree
“tree-2”, the corresponding formula is concretized by binding
the variable to yield “longish(tree-2)”. This mechanism an-
chors the underspecified semantics of an iconic gesture into
linguistic context. Currently, multimodal concepts for di-
mensional adjectives (longish, round, tall, etc.), stereotyped
object shapes (box, circle, etc.), and basic spatial relations
(right-of, side-by-side, above, etc.) are defined.

4.2 Production process

4.2.1 Image and Preverbal Message Generation
The production of a chunk of multimodal object descrip-

tion starts upon the arrival of a message from the Commu-

nication Planner, containing a new communicative intent.
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Such a communicative intent comprises a specification of
the intended communicative act (e.g., introduce, describe,
describe-position, describe-construction) along with the en-
tities to be referred to or the properties to be predicated.

The Image Generator accesses the IDTs stored in long-
term memory and activates the imagistic descriptions of all
objects involved in the communicative goal. This activation
generally leads to import into the respective working mem-
ory structure. Likewise, the Preverbal Message Generator
starts by selecting knowledge from propositional long-term
memory and asserts the selected facts into working memory.

For IMDs with a significantly high activation, the Image
Generator performs spatial perspective taking. That is, it
determines which spatial perspective to adopt towards the
objects. Direction-givers usually adopt either a route (1st
person) or survey (3rd person) perspective [14], with fre-
quent switches between the two. For simplicity, we currently
assume that our agent adopts the more prominent route per-
spective in describing an object. Still, the Image Generator
has to figure out how the objects look like from the partic-
ular point of view adopted and along that particular view
direction. This operation is directly implemented as a trans-
formation on object schemas.

The Image Generator tries to map the perspective IMD
onto the imagistic parts of multimodal concepts in long-term
memory (see Fig. 2). If this succeeds, the corresponding
multimodal concept is added to the working memory unit.
Likewise, multimodal concepts are asserted when they unify
with propositions selected by the Preverbal Message Gener-
ator.

4.2.2 Speech Formulation

The Speech Formulator monitors the unit on the black-
board and carries out sentence planning for each set of propo-
sitions posted by the Preverbal Message Generator. As
related systems we employ SPUD [21], a grammar-based
micro-planner using a Lexicalized Tree Adjoining Grammar
(LTAG) to generate natural language sentences. The gram-
mar and the lexicon have been defined from the object de-
scriptions in our empirical data.

In contrast to the NUMACK system, we avoid extending
the linguistic formalism to account for gesture integration
on the level of speech formulation. Instead, we let this come
about via multimodal content planning and only leave it to
the Speech Formulator to lay down the necessary temporal
constraints for speech-gesture synchrony at surface structure
level. To this end, SPUD delivers back information on the
semantics of each linguistic constituent. The multimodal
concepts are utilized to find the words that are maximally
co-expressive with each gesture the Gesture Formulator has
proposed. The derived temporal constraints then mark the
onset and end of the lexical affiliate on word level and are
asserted to the blackboard unit, too.

4.2.3 Gesture Formulation

The Gesture Formulator has to compose and specify the
morphology of a gesture in terms of a typed attribute-value
matrix. For this purpose, it can take as input all IMDs
comprised by the working memory unit but also has access
to all other information on the blackboard.

The results of our corpus analyses suggest both intra- and
inter-personal systematics in gesture generation. We employ
a Bayesian network to model those choices in the production
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Figure 4: Bayesian network built from data of one
speaker, allowing to decide (1) if the production of a
gesture is adequate, (2) which representation tech-
nique to perform, and (3) which handshape to use.

process which we found to be highly idiosyncratic. These in-
clude, first, the question if a gesture will be produced to re-
fer to a particular entity, second, which representation tech-
nique to perform, and finally, the handshape to be used if
it correlates with the technique. In order to find the most
likely causal influences between these features, we learned
the structure of the Bayesian network from our corpus data
using the Necessary Path Condition (NPC) algorithm [19].
The NPC algorithm is a constraint-based structure learn-
ing algorithm that identifies the structure of the underlying
graph by performing a set of statistical tests for pairwise in-
dependence between each pair of variables. In other words,
the independence of any pair of variables given any sub-
set of other variables is tested. Once the structure of the
network has been found, its maximum likelihood estimates
of parameters are computed. The resulting Bayesian net-
work is shown in Fig. 4. It is built from annotated data
of one particular speaker (P5) who gestured a lot, i.e., we
have learned an individual speaker model explicating the
idiosyncratic patterns that need to be followed in behavior
modeling.

Using the Bayesian network, the Gesture Formulator de-
cides if the production of a gesture is adequate, which rep-
resentation technique to perform, and which handshape to
use given the evidence about the communicative context at
hand (see Fig. 4). One result is the most probable gesture
technique, for which a template is selected from an exhaus-
tive set. This template provides a partially filled gesture
form feature matrix, along with specific procedures to deter-
mine and fill the remaining open slots in order to maximize
iconicity between the visuo-spatial shape features provided
by the IDT model and gesture morphology. This includes
mapping the IMD into the gesture space coordinate frame
to define the gesture position, choosing an adequate palm
orientation, or (if not implied by the Bayesian net) select-
ing the most resembling handshape. This “iconic mapping”
employs, again, unification of the referent IMD with IMDs
predefined for prominent handshapes.

The process of gesture formulation results in a matrix of
form features as proposed by [12]: handshape, wrist loca-
tion, palm direction, extended finger direction, movement
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trajectory and direction. These features lay down the ges-
tural movements and can take on either symbolic or numeri-
cal values. For realtime surface realization of such a gesture
specification, as well as of a verbal utterance, we employ the
ACE realization engine [13] which turns them into synthetic
speech and synchronized gesture animations.

5. RESULTS FROM A FIRST APPLICATION

A first prototype of the previously described computa-
tional model has been realized using our own multi-agent
system toolkit, a Prolog implementation of SPUD, the Hugin
toolkit for Bayesian inference, and the ACE realization en-
gine. This prototype was employed in a first application
scenario during an open house day in our lab. In this ap-
plication, about 150 visitors of the lab could engage in a
game with the virtual human Max, where Max explains
multimodally a building of the virtual environment. Being
equipped with proper knowledge sources, i.e., communica-
tive plans, lexicon, grammar, propositional and imagistic
knowledge about the world, Max randomly picks a land-
mark and a certain perspective towards it, and then cre-
ates his explanations autonomously. The system achieves
near real-time performance. In the following we illustrate
the production process of a particular multimodal utterance
step by step and give generation results.

Let us assume the communicative goal being “describe-
construction churchtower-1 roof-3”. The IDT nodes in Max’s
imagery labeled “churchtower-1” and “roof-3” get activated.
This activation propagates down the tree so that each child
node gets half of its parent’s activation (Fig. 5). The ac-
tivated part of the IDT is imported into working memory
as well as a set of significantly activated propositions, which
contain “churchtower-1” or “roof-3” as argument (high ac-
tivation) or are related to one of the referents, e.g., by a
part-of relation (less highly activated).

T v A
AR

Figure 5: A churchsquare in the virtual world (left)
and schematic of the corresponding IDT content
(right); activated parts are marked.

Let us further assume that Max has chosen a point of
view on the church square between the two churches, fac-
ing the left church at a distance of 10m. Each IMD is
transformed into the adopted perspective, using a standard
view transformation as in computer graphics, and all IDT
nodes which are occluded are culled. The resultant IDMs
of churchtower-1 and roof-3 are written back to the black-
board, upon which the Image Generator tries to match them
with imagistic parts of any multimodal concept defined in
long term memory. In our example, the IMD of roof-3 uni-
fies with the concept “round”;, which is therefore added to
the working memory. The variable in the propositional part
of the multimodal concept gets bound to “roof-3”.

Now the formulator modules take action and the pro-
duction process hence enters the microplanning stage. The
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Speech Formulator lets the SPUD system search for an ad-
equate verbalization of the propositions on the blackboard.
Figure 6 shows the resulting LTAG tree generated in our
case; for illustration, each surface element is annotated with
information about the propositional meaning it conveys.

S
/\
NP VP
entity(tower-1,
single) / AN / AN LOC: Periphery Center
the tower  has NP TRAJ: -
entity(roof-3 MOVEMENT DIR:  ---
A S%g,e) g PALM DIR: PDN
EXT FINGER DIR:  ---
a JJ (roof HANDSHAPE: ASL-bent-5

property(roof-3,
dome-shaped)

dome-shaped

Figure 6: LTAG tree generated for the utterance
“the tower has a dome-shaped roof”’ (left) and ges-
ture form feature matrix generated by the Gesture
Formulator (right).

The Gesture Formulator runs once for churchtower-1 and
once for roof-3. All facts available are entered into and
propagated through the Bayesian network learned before-
hand from our empirical data. We assume churchtower-1 to
be already introduced into discourse, thus having the infor-
mation state “shared”. The corresponding nominal phrase
“the tower” hence fulfills the role of the sentence’s theme.
These facts are entered into the network and result in a
likelihood of .17 for producing a gesture. Consequently, the
gesture Formulator stops the generation of the gesture and
goes on with the second entity, roof-3. Its information state
is “private”; since it has not been introduced yet, and the
referring expression “a dome-shaped roof” is the sentence’s
rheme. Propagated through the network, the resulting like-
lihood to produce a gesture is 1.0. The Gesture Generator
enters further facts: the communicative action (describe-
construction), the number of childnodes (1) and the en-
tity’s symmetry property (round with one symmetrical axis).
What results is the highest probability of .45 for a postur-
ing gesture. The Formulator now chooses the template for
posturing to be filled. Since posturing is a technique that de-
picts mainly by its handshape, this slot is filled via an iconic
mapping. Here, the IMD for the ASL-bent-5 handshape is
found most similar to the referent IMD. Likewise, the ges-
ture location is inquired from the IMD as well as the palm
orientation towards the object’s main plane. The resultant
feature matrix for the gesture is given in Figure 6. Finally,
the verbal utterance and the gesture’s feature matrix are
translated into a MURML description, which is then sent
for realtime realization to the virtual agent Max. Figure 7,
bottom-left, shows a screenshot of the resulting gesture.

So far, we have trained the Bayesian network for Gesture
Formulation only from the empirically observed behavior of
subject P5 for the descriptions of four different landmarks
in the virtual world. As can be seen from the comparison in
Figure 7, our system succeeds in reproducing similar gestural
expressions in corresponding contexts.

6. CONCLUSION

In this paper we have presented a new approach to gen-
erating coordinated speech and iconic gestures in virtual
agents. The necessary interplay between these two modes
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Figure 7: Examples of speaker P5 from our corpus
and similar movements simulated with our system.

of expressiveness is modeled, first, at the level of two kinds
of knowledge representations and processes and, second, be-
tween specific planners formulating modality-specific behav-
ior. We have put special emphasis on the question how
to bridge the gap between the imagistic representation of
an object and its gestural counterpart, whereby we account
for empirical findings by considering both, systematic inter-
personal factors as well as idiosyncratic gesturing patterns.
We are confident that our approach is a step forward to-
wards increased expressiveness of virtual agents. We will ex-
tend the degree of interaction in our implementation both,
horizontally, of two modes of thinking and, vertically, of the
two levels of planning. Further, we are continuing to gen-
eralize across further speakers, and to employ adaptation
algorithms to detect clusters of speakers who share partic-
ular interrelations between causal variables and observable
behavior. This will enable us to distinguish between and
incorporate in our model different degrees of inter- and in-
trapersonal systematics in gesture production. Finally, a
more thorough evaluation of our system will show how far
our simulation approximates human multimodal behavior.
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